The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics.

نویسندگان

  • E J Louis
  • E S Naumova
  • A Lee
  • G Naumov
  • J E Haber
چکیده

Yeast chromosome ends are composed of several different repeated elements. Among six clones of chromosome ends from two strains of Saccharomyces cerevisiae, at least seven different repeated sequence families were found. These included the previously identified Y' and X elements. Some families are highly variable in copy number and location between strains of S. cerevisiae, while other elements appear constant in copy number and location. Three repeated sequence elements are specific to S. cerevisiae and are not found in its evolutionarily close relative, Saccharomyces paradoxus. Two other repeated sequences are found in both S. cerevisiae and S. paradoxus. None of those described here is found (by low stringency DNA hybridization) in the next closest species, Saccharomyces bayanus. The loosely characterized X element is now more precisely defined. X is a composite of at least four small (ca. 45-140 bp) sequences found at some, but not all, ends. There is also a potential "core" X element of approximately 560 bp which may be found at all ends. Distal to X, only one of six clones had (TG1-3)n telomere sequence at the junction between X and Y'. The presence of these internal (TG1-3)n sequences correlates with the ability of a single Y' to expand into a tandem array of Y's by unequal sister chromatid exchange. The presence of shared repeated elements proximal to the X region can override the strong preference of Y's to recombine ectopically with other Y's of the same size class. The chromosome ends in yeast are evolutionarily dynamic in terms of subtelomeric repeat structure and variability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.

DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population ...

متن کامل

The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.

In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisia...

متن کامل

Mosaic and partial monosomy of chromosome 21 in a case with low platelets count

Background Monosomy is defined as the presence of only one chromosome instead of two in humans. Partial monosomy occurs when only a portion of the chromosome is present in a single copy, while the rest has two copies. It can occur in unbalanced translocations or deletions. Case report In this report, a 6 years old girl was presented who was referred to the Pediatric Dep, Shahid Sadoughi Ho...

متن کامل

Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells.

Yeast Mre11 functions with Rad50 and Xrs2 in a complex that has pivotal roles in homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA double-strand break (DSB) repair pathways. Vertebrate Mre11 is essential. Conditionally, MRE11 null chicken DT40 cells accumulate chromosome breaks and die upon Mre11 repression, showing frequent centrosome amplification. Mre11 deficiency also ...

متن کامل

Application of Molecular DNA Markers (STRs) in Molecular Diagnosis of Down Syndrome in Iran

Down syndrome is one of the most common causes of mental retardation observed in approximately 1/700 live birth. The use of two or more STR markers related to chromosome 21 facilitates the diagnosis of Down syndrome within about six hours from the collection of the samples. This is the first study has been performed in Iranian population to assess the diagnostic value of using small tandem repe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 136 3  شماره 

صفحات  -

تاریخ انتشار 1994